Today is:
Manual Pseudopotentials and orbitals Examples

 

3.2 Running the program

 

Suppose now you are in your work directory, first prepare INPUT, STRU and KPT files mentioned above here, And then copy the pseudopotential file Si.pz-vbc.UPF also to this directory.

 

cp $ABACUS_DIR/data/elements/14 Si/1 LDA/Si.pz-vbc.UPF ./

 

Where $ABACUS_DIR denotes the path to the ABACUS package. Run the program by typing $ABACUS DIR/bin/ABACUS.fp mpi-v$num.x
The following typical output information will be printed to the screen:

 

*********************************************************
*
*           WELCOME TO ABACUS
*
*       ’Atomic-orbital Based Ab-initio
*              Computation at UStc’
*
*********************************************************
Wed Sep 9 21:44:58 2015
MAKE THE DIR : OUT.ABACUS/
DONE(0.013026 SEC) : SETUP UNITCELL
DONE(0.0143099 SEC) : INIT K-POINTS
---------------------------------------------------------
This calculation is self-consistent

---------------------------------------------------------
SPIN KPOINTS PROCESSOR
1          64              1
---------------------------------------------------------
Use plane wave basis
---------------------------------------------------------
ELEMENT NATOM      XC
Si                 2          PZ-LDA
---------------------------------------------------------
Initial plane wave basis and FFT box
---------------------------------------------------------
DONE(5.13402 SEC) : INIT PLANEWAVE
UNIFORM GRID DIM : 36 * 36 * 36
UNIFORM GRID DIM(BIG): 36 * 36 * 36
MEMORY FOR PSI (MB) : 6.26562
DONE(5.14667 SEC) : LOCAL POTENTIAL
DONE(5.16344 SEC) : NON-LOCAL POTENTIAL
START POTENTIAL : atomic
DONE(5.17689 SEC) : INIT POTENTIAL
DONE(6.7622 SEC) : INIT BASIS
-------------------------------------------
SELF CONSISTENT :
-------------------------------------------
ITER ETOT(eV) EDIFF(eV) DRHO2 CG_ITER TIME(S)
CG1 -2.192279e+02 0.000000e+00 6.928e-02 3.000e+00 3.420e+00
CG2 -2.154958e+02 3.732172e+00 5.745e-03 2.871e+00 3.370e+00

 

This is a self-consistent ground-state calculation with the plane wave basis. The first few lines show some basic information of the calculation. And the last few lines describes the electronic steps iterated to self-consistency. The ‘ITER’ column is electron iteration steps, and ’CG’ means that the conjugate gradient method is used here to solve Kohn-Sham equation. ‘ETOT’ is the total energy of the system in every iteration step in unit of eV. ‘EDIFF’ is the total energy difference between an iteration step and the last step in unit of eV. ‘DRHO2’ is the error between input and output charge density every iteration step. ‘CG_ITER’ is average iteration number in ccgdiag. ‘TIME’ is time used every iteration step in unit of seconds.

 

 

copyright © Key Lab of Quantum Information, CAS